本来是想直接深入到mars的核心层去看的,但是发现其实上面的samples部分还有好些没有分析到,因此回来继续分析。
ConversationActivity这个类中实际上还做了很多的工作,在onCreate中:final MainService mainService = new MainService(); MarsServiceProxy.setOnPushMessageListener(BaseConstants.CGIHISTORY_CMDID, mainService); MarsServiceProxy.setOnPushMessageListener(BaseConstants.CONNSTATUS_CMDID, mainService); MarsServiceProxy.setOnPushMessageListener(BaseConstants.FLOW_CMDID, mainService); MarsServiceProxy.setOnPushMessageListener(BaseConstants.PUSHMSG_CMDID, mainService); MarsServiceProxy.setOnPushMessageListener(BaseConstants.SDTRESULT_CMDID, mainService);
这里出现了一个MainService,我们来看看:
/mars-master/samples/android/marsSampleChat/app/src/main/java/com/tencent/mars/sample/core/MainService.javapublic class MainService implements PushMessageHandler { public static String TAG = "Mars.Sample.MainService"; private Thread recvThread; private LinkedBlockingQueuepushMessages = new LinkedBlockingQueue<>(); private BusinessHandler[] handlers = new BusinessHandler[]{ new MessageHandler(), new StatisticHandler() }; public MainService() { this.start(); } public void start() { if (recvThread == null) { recvThread = new Thread(pushReceiver, "PUSH-RECEIVER"); recvThread.start(); } } private final Runnable pushReceiver = new Runnable() { @Override public void run() { while (true) { try { PushMessage pushMessage = pushMessages.take(); if (pushMessage != null) { for (BusinessHandler handler : handlers) { if (handler.handleRecvMessage(pushMessage)) { break; } } } } catch (InterruptedException e) { e.printStackTrace(); try { Thread.sleep(500); } catch (InterruptedException e1) { // } } } } }; @Override public void process(PushMessage message) { pushMessages.offer(message); } }
1.启动了一个接受者线程pushReceiver;2.pushReceiver从LinkedBlockingQueue的pushMessages中不断获取message,然后通知到handlers的每个成员中,handlers是这样定义的:
private BusinessHandler[] handlers = new BusinessHandler[]{ new MessageHandler(), new StatisticHandler() };
继续往下看MessageHandler:/mars-master/samples/android/marsSampleChat/app/src/main/java/com/tencent/mars/sample/core/MessageHandler.java
public class MessageHandler extends BusinessHandler{ public static String TAG = MessageHandler.class.getSimpleName(); @Override public boolean handleRecvMessage(PushMessage pushMessage) { switch (pushMessage.cmdId) { case Constants.PUSHCMD: { try { Messagepush.MessagePush message = Messagepush.MessagePush.parseFrom(pushMessage.buffer); Intent intent = new Intent(); intent.setAction(Constants.PUSHACTION); intent.putExtra("msgfrom", message.from); intent.putExtra("msgcontent", message.content); intent.putExtra("msgtopic", message.topic); SampleApplicaton.getContext().sendBroadcast(intent); } catch (InvalidProtocolBufferNanoException e) { Log.e(TAG, "%s", e.toString()); } } return true; default: break; } return false; } }
如果是Constants.PUSHCMD类型的message,那么就发送一个广播。这个广播实际上会由Mars核心部分接收到,但是传递的intent参数其实没有意义,核心部分只是根据每次的pushcmd进行网络状态的检查而已,这些后话我们在分析核心的时候再说。
另外一个StatisticHandler,是专用于统计的,我们暂时不去关注。让我们回到ConversationActivity,在MainService的new之后,会调用MarsServiceProxy.setOnPushMessageListener多次,设置监听,我们来看看MarsServiceProxy里面如何运转:public static void setOnPushMessageListener(int cmdId, PushMessageHandler pushMessageHandler) { if (pushMessageHandler == null) { inst.pushMessageHandlerHashMap.remove(cmdId); } else { inst.pushMessageHandlerHashMap.put(cmdId, pushMessageHandler); }}
添加了监听到一个支持高并发的hashmap中:
private ConcurrentHashMappushMessageHandlerHashMap = new ConcurrentHashMap<>();private MarsPushMessageFilter filter = new MarsPushMessageFilter.Stub() { @Override public boolean onRecv(int cmdId, byte[] buffer) throws RemoteException { PushMessageHandler handler = pushMessageHandlerHashMap.get(cmdId); if (handler != null) { Log.i(TAG, "processing push message, cmdid = %d", cmdId); PushMessage message = new PushMessage(cmdId, buffer); handler.process(message); return true; } else { Log.i(TAG, "no push message listener set for cmdid = %d, just ignored", cmdId); } return false; }};
可以看到,这里创建了一个filter,这个filter在接收到一个cmd后,根据id查找到PushMessageHandler,然后调用hander.process,传递参数PushMessage,这个PushMessage实际上又是由cmdid和buffer组成的。这里的cmdid理解为一个指令的类型id即可。再到MainService中的process,其实就是加入PushMessage的一个队列中等待处理。
回来看filter在何时调用的吧。首先在MarsServiceProxy的onServiceConnected:@Overridepublic void onServiceConnected(ComponentName componentName, IBinder iBinder) { Log.d(TAG, "remote mars service connected"); try { service = MarsService.Stub.asInterface(iBinder); service.registerPushMessageFilter(filter); service.setAccountInfo(accountInfo.uin, accountInfo.userName); } catch (Exception e) { service = null; }}
看到了吧,将这个filter注册到了服务中。来吧,MarsServiceNative的registerPushMessageFilter:
@Overridepublic void registerPushMessageFilter(MarsPushMessageFilter filter) throws RemoteException { stub.registerPushMessageFilter(filter);}
到了MarsServiceStub里:
@Overridepublic void registerPushMessageFilter(MarsPushMessageFilter filter) throws RemoteException { filters.remove(filter); filters.add(filter);}
加入了filters的队列中,然后在onPush中有所调用:
@Overridepublic void onPush(int cmdid, byte[] data) { for (MarsPushMessageFilter filter : filters) { try { if (filter.onRecv(cmdid, data)) { break; } } catch (RemoteException e) { // } }}
这里调用了每个filter的onRecv方法,这样就和上面的串起来了吧。那么何时调用的这个onPush呢,答案在核心mars部分的StnLogic里面,这里规定了一个ICallBack,里面有onPush,会在适当的时候调用。具体的内容我会在后面的mars核心层分析的时候指出。
总结一下:
MainService在一开始启动,并且启动专门的线程处理接收到的pushMessage,处理的过程就是调用之前已经准备好的一个handler的队列的每个项目的handleRecvMessage,其中的MessageHandler会发送广播通知mars有pushcmd来了。另一方面,MainService提供process调用向message队列中加入新项目。这个加入的过程调用在MarsServiceProxy中进行,内部生成了一个filter过滤器,并将其注册到服务MarsServiceNative中,MarsServiceNative其实也是走的MarsServiceStub,在他里面维护的filter的队列,并且MarsServiceStub还是底层核心Mars的回调监听者,在onPush到来的时候,依次调用filter队列中的各个项目的onRecv方法来实现通知。在filter的onRecv方法中就实现了handler.process(message),通知到了handler。现在对于这部分应该比较明晰了吧。准备下一篇进行Mars的核心层分析吧。